CP violation at CDF

Outline

- Standard Model, physics beyond SM (BSM or NP) and the role of indirect searches for BSM.
 - CP violation in b-hadron decays as a tool to search for BSM
- Tevatron and CDF II detector
 - doing B physics in hadronic environment
- CP violation measurements at CDF:
 - $B_s \rightarrow J/\psi \phi$: lifetime, $\Delta \Gamma_s$ and CP violation in B_s system
 - charge asymmetry in semileptonic B_s decays
 - CPV in fully hadronic channels
 - $B_s \rightarrow K\pi$, $B^0 \rightarrow K\pi$, and $\Lambda_b \rightarrow p \pi$, pK decays
 - $B^+ \rightarrow D^0_{CP} K^+$
- Conclusions

Role of precision measurements

- Standard Model works well: excellent agreement with data for 30+ years.
- Perhaps too well: we don't understand many things (dark matter, dark energy, neutrino masses, baryon asymmetry, no Higgs yet, etc.)
- We all believe there's deeper physics that underlies SM
 - Beyond SM ("BSM"), or New Physics ("NP")
- Road to New Physics:
 - direct searches at Tevatron (now) and LHC (soon)
 - indirect searches: check internal consistency of SM

CP violation as `precision' tests

If there were New Physics:

$$A_{
m meas} = A^{SM} + A^{NP} = |A^{SM}| e^{i\phi^{SM}} + |A^{NP}| e^{i\phi^{NP}}$$

- New Physics can affect the magnitude, i.e. $|A_{
 m meas}|^2
 eq |A^{SM}|^2$
- Or if there's phase difference, i.e., $\phi^{SM} \neq \phi^{NP}$, there will be **interference** which would be a new source of CP violation

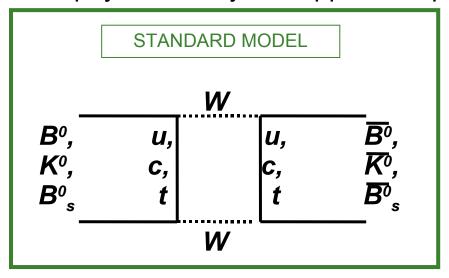
- CP violation is any difference between properties of a decay and its "mirror image" resulting from C and P transformations. It could include:
 - decay rate (this requires ASM to also contain a strong phase)
 - triple products (works even when strong phase is 0)
 - coefficients describing angular decomposition of the amplitude, etc.

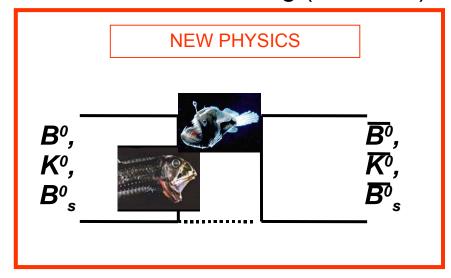
CP violation where there should be none

- Most consistency checks (especially in electroweak data) have achieved amazing precision (think of W mass)
- Null' measurements (in cases where SM predicts ~ 0) are especially powerful
 - e.g., BR($B_{\rm s}\!\!\to\mu\mu$) in SUSY may be significantly larger than in SM
- CP violation measurements often have lower precision
- So, null CP violation measurements are particularly useful any significant deviation from 0 is a potential signal of BSM
- Null CP violation is the main topic of this talk

Example of possible NP contribution

New physics, if any, in suppressed processes, as flavor-mixing (or FCNC).





Effective field theory factorizes New Physics into a complex amplitude

$$\frac{\langle M|H_{\mathrm{eff}}^{\mathrm{full}}|\bar{M}\rangle}{\langle M|H_{\mathrm{eff}}^{\mathrm{SM}}|\bar{M}\rangle} = C_{M}e^{2(\phi_{M})}$$

$$C_{B_{s}}e^{2i\phi_{B_{s}}} = \frac{A_{s}^{\mathrm{SM}}e^{-2i\beta_{s}} + A_{s}^{\mathrm{NP}}e^{2i(\phi_{s}^{\mathrm{NP}}-\beta_{s})}}{A_{s}^{\mathrm{SM}}e^{-2i\beta_{s}}} = \frac{\langle B_{s}|H_{\mathrm{eff}}^{\mathrm{full}}|\bar{B}_{s}\rangle}{\langle B_{s}|H_{\mathrm{eff}}^{\mathrm{SM}}|\bar{B}_{s}\rangle},$$

Bottom line: to constrain NP need to measure magnitude and phase

CP violation in Standard Model

 Standard Model CP violation occurs through complex phases in the unitary CKM quark mixing matrix (3 real params + one phase)

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

• Expanded in $\lambda = \sin(\theta_{Cabibbo}) \approx 0.23$:

Large CP violation $\sim \lambda^3$

$$\begin{array}{c} \text{Highly suppressed} \\ \text{CP violation } \sim \lambda^5 \end{array} & \begin{array}{c} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4 \end{array} \right)$$

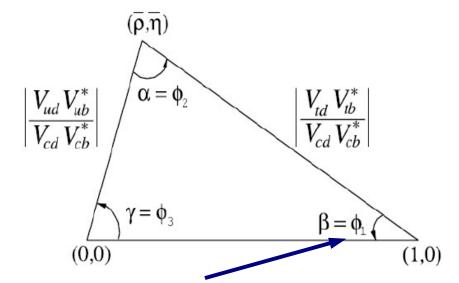
Large CP violation $\sim \lambda^3$

Suppressed CP violation ~ λ⁴

CP violation in Standard Model (2)

B_d unitarity triangle

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$



All three angles large

==>
$$\beta \equiv \arg \left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*} \right) \sim 22^0$$

==> Acp large

B_s unitarity triangle

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0$$

$$\frac{\left|\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right|}{\left|\frac{V_{us}V_{ub}^{*}}{V_{cs}V_{cb}^{*}}\right|} (0,0)$$

$$\beta_{s} (1,0)$$

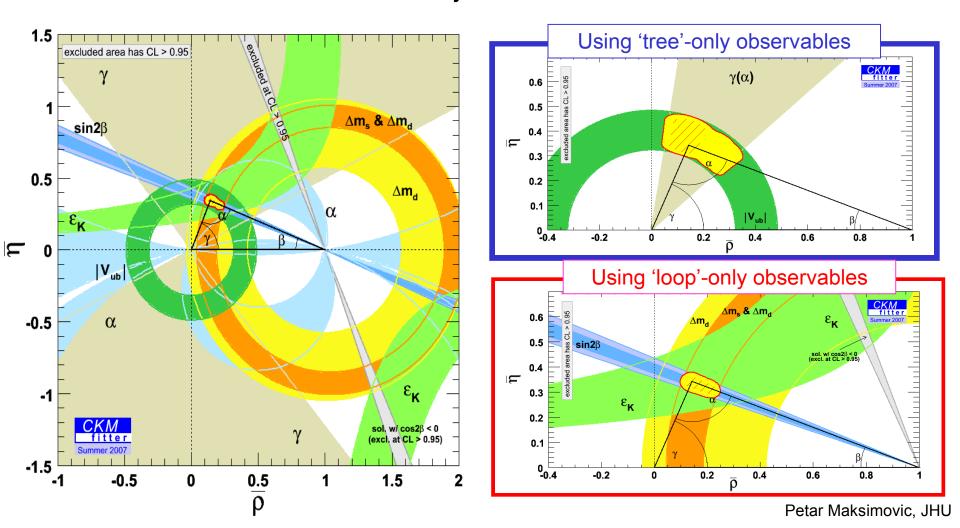
`Squashed' triangle ==> small β_s angle

$$\beta_s = \beta' \equiv \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = \mathcal{O}(\lambda^2) \sim 1.1^{o}$$

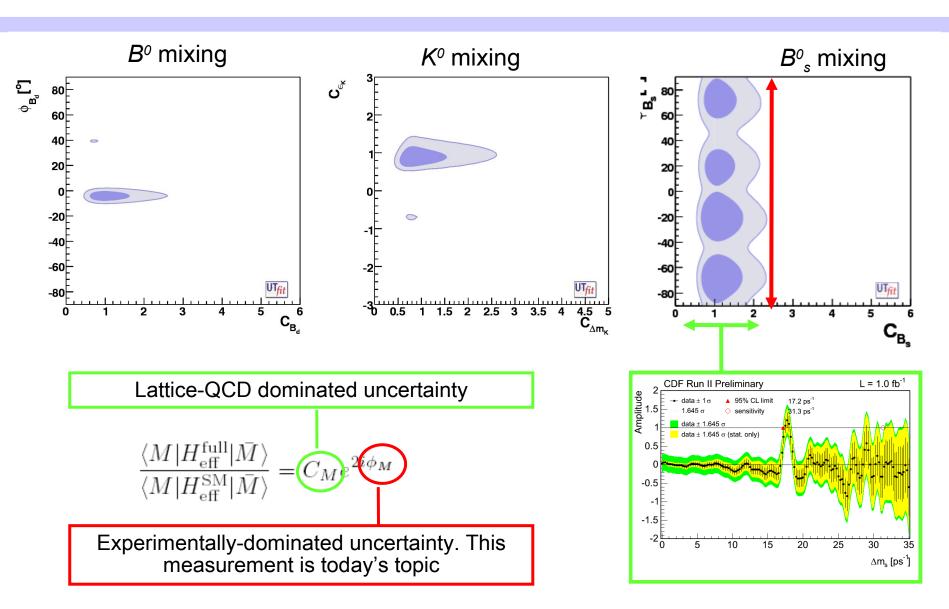
$$=> \mathsf{Acp} \sim 0$$

Current status – all measurements

Kaon physics and B factories: satisfactory SM picture of CP violation - at least at tree level in B^0 and B^+ decays.



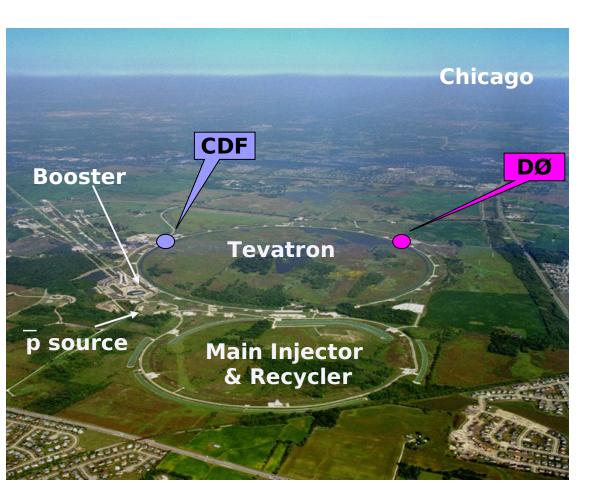
Current status – phases in mixing

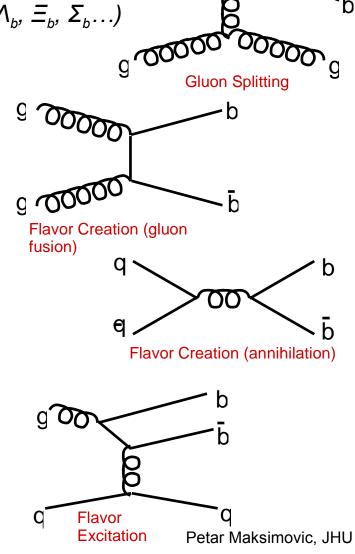


3/18/2008, RPM at LBL Petar Maksimovic, JHU

Tevatron + CDF = *b-hadron factory*

- Tevatron: pp collisions at 1.96 GeV/c²
- All species of b-hadrons produced! (B^+ , B^0 , B_s , B_c , Λ_b , Ξ_b , Σ_b ...)
- performs really well: ~ 3 fb⁻¹ data on tape





Relevant subsystems of CDF

• muons (for B reconstruction) up to $|\eta|$ <1 (high- η muons used for flavor tagging)

central electrons used for

flavor tagging

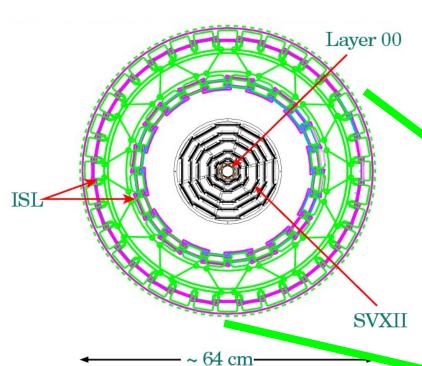
CDF has excellent tracking:

 d₀ resolution (needed for B physics)

p_T resolution
 (needed to measure masses)

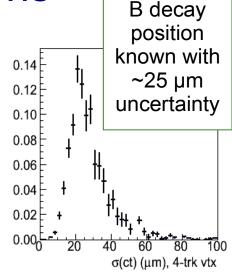
B reco, soft electrons also used for

Reconstructing heavy hadrons

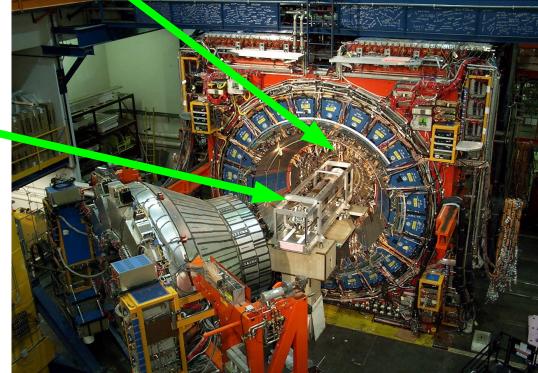


b-quarks CDF can reconstruct are boosted sideways

 $ct = L_{xy} (m/p_{T})$

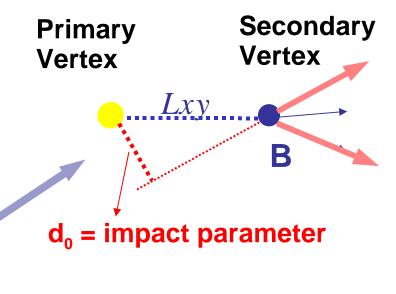


Decays of hadrons with b and c quarks can be observed with a Silicon Detector



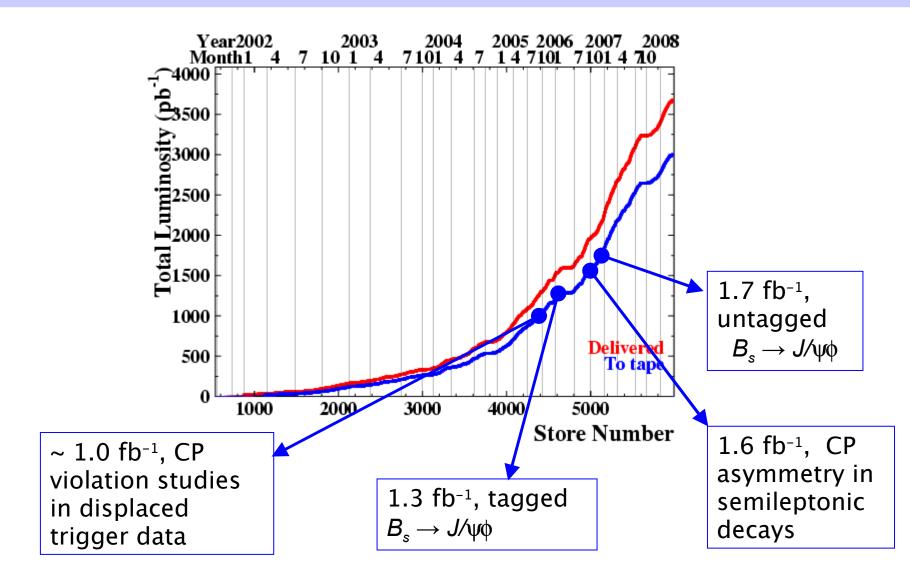
Mining b's from mountains of junk!

- Production rate of b-quarks is very large...
 but rate of (uninteresting) soft QCD is 1000x larger!
- b-physics program lives and dies by the "trigger system"
 - very fast electronics
 - examines events in real time
 - decides to keep some events
 e.g. those with
 - 2 muons
 - e or μ + 1 displaced track
 - 2 displaced tracks (fully hadronic!)



 Silicon Vertex Trigger (SVT) – part of trigger system that finds displaced tracks and triggers on heavy hadrons

CDF data used in these analyses



Neutral B_s System

- Time evolution of B_s flavor eigenstates described by Schrodinger equation:

$$i\frac{d}{dt} \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix}$$

- Diagonalize mass (M) and decay (Γ) matrices

→ mass eigenstates

$$|B_s^H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle \qquad |B_s^L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle$$

 $q/p = \frac{V_{tb}V_{ts}^*}{V_{\cdot \cdot \cdot}^* V_{\cdot \cdot}}$

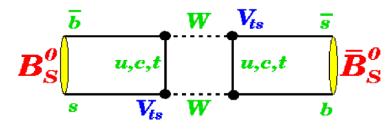
mass eigenvalues are different ($\Delta m_s = m_H - m_L \approx 2|M_{12}|$)

- \rightarrow B_s oscillates with frequency Δ m_s
- Precisely measured by

CDF
$$\Delta m_s = 17.77 +/- 0.12 ps^{-1}$$

DØ $\Delta m_s = 18.56 +/- 0.87 ps^{-1}$

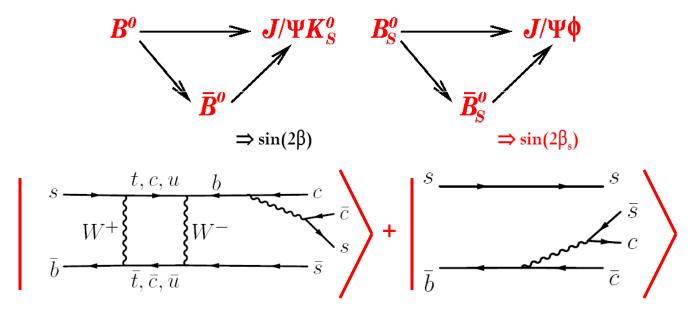
- Mass eigenstates have different decay widths $\Delta\Gamma = \Gamma_L \quad \Gamma_H \approx 2|\Gamma_{12}|\cos(\Phi_s) \quad \text{where} \quad \phi_s^{SM} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \approx 4 \times 10^{-3}$



$$\phi_{\rm s}^{\rm SM} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \approx 4 \times 10^{-5}$$

CP violation in $B_s \rightarrow J/\psi \phi$ decays

 Analogously to the neutral B⁰ system, CP violation in B_s system occurs through interference of decay with and without mixing:



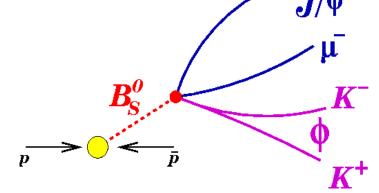
- β_s in SM is predicted to be very small:
- $\beta_s^{\rm SM} = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*) \approx 0.02$
- New Physics affects the CP violation phase $~2\beta_s=2\beta_s^{\rm SM}-\phi_s^{\rm NP}$
- If NP phase $\phi_s^{\rm NP}$ dominates \to $2\beta_s = -\phi_s^{\rm NP}$

$$2\beta_s = -\phi_s^{NP}$$

$B_s \rightarrow J/\psi \phi$ phenomenology

- Extremely rich physics
- Can measure lifetime, decay width, and, using known Δm_s , CP violating phase β_s
- B_s (spin 0) → J/ψ(spin 1) φ(spin 1) ==>
 3 different angular momentum final states:
 L = 0 (s-wave), L = 2 (d-wave) → CP even

 L = 1 (p-wave) → CP odd



- Three angular momentum states form a basis for the final J/ψφ state
- Use alternative "transversity basis" in which the vector meson polarizations w.r.t. direction of motion are either:
 - longitudinal (0)

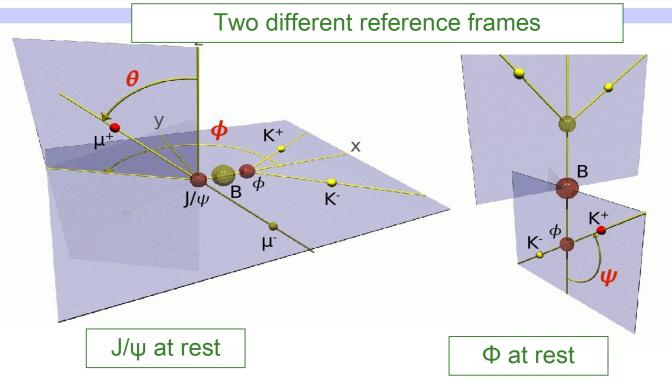
- transverse (parallel to each other)

→ **CP** even

→ CP even

- transverse ($^{\perp}$ perpendicular to each other) \rightarrow CP odd

"Transversity" Basis



Decay amplitude decomposed (in terms of linear polarization) when J/ψ and ϕ are

A₀: longitudinally polarized (CP-even)

A_{||}: transversely polarized and ∥to each other (CP-even)

 A_{\perp} : transversely polarized and \perp to each other (CP-odd)

=> 3 angles describe directions of final decay products $\varphi = \rho(\cos\theta, \phi, \cos\psi)$

"Strong" phases: $\delta_{\perp} = \arg[A_{\perp}^* A_0]$, $\delta_{\parallel} = \arg[A_{\parallel}^* A_0]$,

$B_s \rightarrow J/\psi \phi$ phenomenology

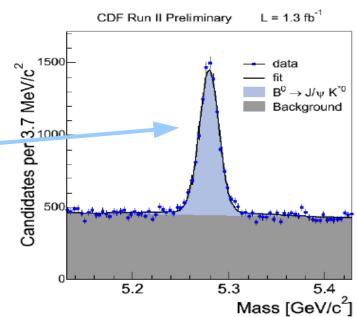
- Good approximation: $\phi_s \approx 0$ ==> mass eigenstates $|B_s^L\rangle$ and $|B_s^H\rangle$ are CP eigenstates
 - → use angular information to separate heavy and light states
 - → determine decay width difference

$$\Delta\Gamma = \Gamma_{L} - \Gamma_{H}$$

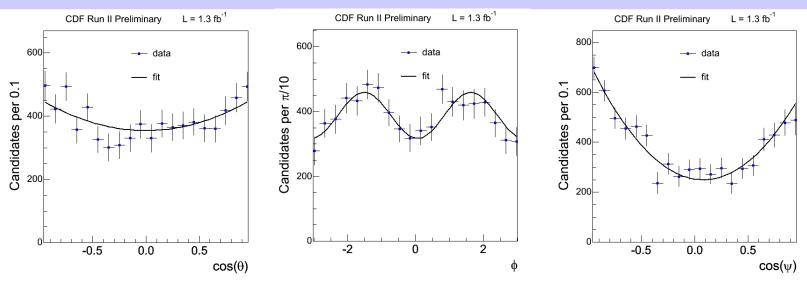
- \rightarrow some sensitivity to CP violating phase β_s
- Determine *B*_s flavor at production (flavor tagging)

 \rightarrow improve sensitivity to β_s

Cross-check procedure for angular decomposition on $B^0 \rightarrow J/\psi K^{*0}$ (~7800 events from 1.3 fb⁻¹)



Check amplitude decomposition on $B^0 \rightarrow J/\psi K^{*0}$



In agreement (and competitive with) the latest BaBar and Belle result:
 e.g., BaBar: PRD 76,031102 (2007)

ct = 456 ± 6 (stat) ± 6 (syst) µm

$$|A_0(0)|^2 = 0.569 \pm 0.009 \text{ (stat)} \pm 0.009 \text{ (syst)}$$

 $|A_{\parallel}(0)|^2 = 0.211 \pm 0.012 \text{ (stat)} \pm 0.006 \text{ (syst)}$
 $\delta_{\parallel} = -2.96 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)}$
 $\delta_{\perp} = -2.97 \pm 0.06 \text{ (stat)} \pm 0.01 \text{ (syst)}$

$$\begin{split} |A_0(0)|^2 &= 0.556 \pm 0.009 \text{ (stat)} \pm 0.010 \text{ (syst)} \\ |A_{\parallel}(0)|^2 &= 0.211 \pm 0.010 \text{ (stat)} \pm 0.006 \text{ (syst)} \\ \delta_{\parallel} &= -2.93 \pm 0.08 \text{ (stat)} \pm 0.04 \text{ (syst)} \\ \delta_{\perp} &= -2.91 \pm 0.05 \text{ (stat)} \pm 0.03 \text{ (syst)} \end{split}$$

Decay PDF for B_s^0 and \overline{B}_s^0

$$\frac{d^4 P(t, \vec{\rho})}{dt d\vec{\rho}} \propto |A_0|^2 \mathcal{T}_+ f_1(\vec{\rho}) + |A_{\parallel}|^2 \mathcal{T}_+ f_2(\vec{\rho})$$

$$+ |A_{\perp}|^2 \mathcal{T}_- f_3(\vec{\rho}) + |A_{\parallel}| |A_{\perp}| \mathcal{U}_+ f_4(\vec{\rho})$$

$$+ |A_0| |A_{\parallel}| \cos(\delta_{\parallel}) \mathcal{T}_+ f_5(\vec{\rho})$$

$$+ |A_0| |A_{\perp}| \mathcal{V}_+ f_6(\vec{\rho}),$$

 A_0 , A_{\parallel} , A_{\perp} : transition amplitudes in a given polarization state at time 0

$$\frac{d^{4}P(t,\rho)}{dtd\vec{\rho}} \propto |A_{0}|^{2}\mathcal{T}_{+}f_{1}(\vec{\rho}) + |A_{\parallel}|^{2}\mathcal{T}_{+}f_{2}(\vec{\rho})$$

$$+ |A_{\perp}|^{2}\mathcal{T}_{-}f_{3}(\vec{\rho}) + |A_{\parallel}||A_{\perp}|\mathcal{U}_{-}f_{4}(\vec{\rho})$$

$$+ |A_{0}||A_{\parallel}|\cos(\delta_{\parallel})\mathcal{T}_{+}f_{5}(\vec{\rho})$$

$$+ |A_{0}||A_{\perp}|\mathcal{V}_{-}f_{6}(\vec{\rho}),$$

f(ρ): angular distribution for a given polarization state

Time Evolution with Flavor Tagging

$$\mathcal{T}_{\pm} = e^{-\Gamma t} \times \left[\cosh(\Delta \Gamma t/2) \mp \cos(2\beta_s) \sinh(\Delta \Gamma t/2) \right] + \eta \sin(2\beta_s) \sin(\Delta m_s t) \right],$$

$$\mathcal{U}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) \right] - \cos(\delta_{\perp} - \delta_{\parallel}) \cos(2\beta_s) \sin(\Delta m_s t) + \cos(\delta_{\perp} - \delta_{\parallel}) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right],$$

$$\mathcal{V}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(\Delta m_s t) \right] - \cos(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) + \cos(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) + \cos(\delta_{\perp}) \sin(2\beta_s) \sin(\Delta \Gamma t/2) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(\delta_{\perp}) \cos(\delta_{\perp}) \cos(\delta_{\perp}) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(\delta_{\perp}) \cos(\delta_{\perp}) \cos(\delta_{\perp}) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(\delta_{\perp}) \cos(\delta_{\perp}) \cos(\delta_{\perp}) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(\delta_{\perp}) \cos(\delta_{\perp}) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(\delta_{\perp}) \cos(\delta_{\perp}) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(\delta_{\perp}) \cos(\delta_{\perp}) \right].$$

$$\mathcal{D}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(\delta_{\perp}) \cos(\delta_{\perp}) \right].$$

$$\mathcal{$$

CDF result as input

Step #1: "untagged" $B_s \rightarrow J/\psi \phi$ analysis

- "Untagged" = No flavor tagging information
- Sum up B⁰_s and anti-B⁰_s PDF equally
- Many terms cancel

$$\mathcal{T}_{\pm} = e^{-\Gamma t} \times \left[\cosh(\Delta \Gamma t/2) \mp \cos(2\beta_s) \sinh(\Delta \Gamma t/2) \right]$$

$$\mp \eta \sin(2\beta_s) \sin(\Delta m_s t) \right],$$

$$\mathcal{U}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp} = \delta_{\parallel}) \cos(\Delta m_s t) \right]$$

$$- \cos(\delta_{\pm} = \delta_{\parallel}) \cos(2\beta_s) \sin(\Delta m_s t)$$

$$\pm \cos(\delta_{\perp} - \delta_{\parallel}) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right],$$

$$\mathcal{V}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\pm}) \cos(\Delta m_s t) \right]$$

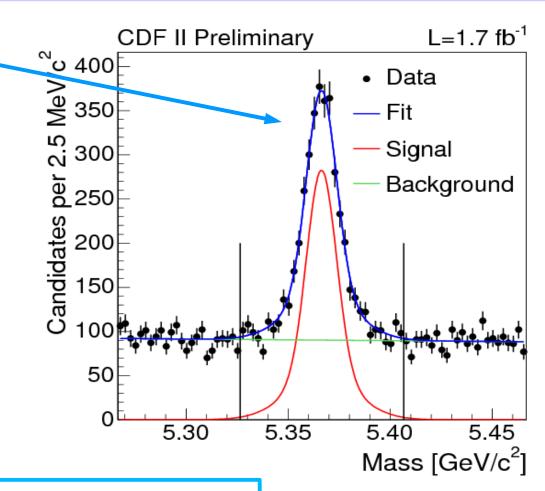
$$- \cos(\delta_{\pm}) \cos(2\beta_s) \sin(\Delta m_s t)$$

 $\pm \cos(\delta_{\perp})\sin(2\beta_s)\sinh(\Delta\Gamma t/2)$].

- Suited for precise measurement of $\Delta\Gamma$ and τ
- Still sensitive to β_s

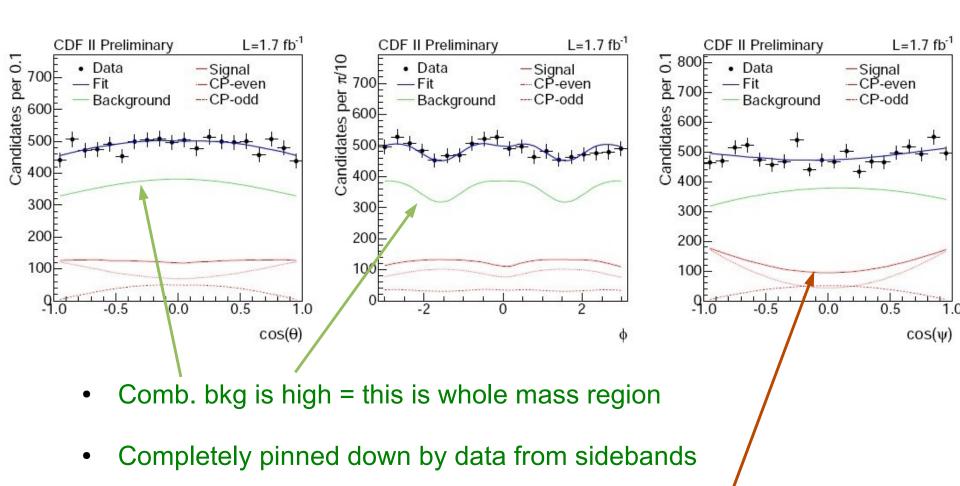
$B_s \rightarrow J/\psi \phi$ sample for untagged analysis

- ~ 2500 signal events in 1.7 fb-1
- Assume no CP violation (i.e. $\beta_s = 0$)
- Most precise measurement of the B_s lifetime to date
- Confirms $\tau_s \sim \tau_d$



$$\tau_s = 1.52 + -0.04 \text{ (stat)} + 0.02 \text{ (syst)} \text{ ps}$$

$B_s \rightarrow J/\psi \phi$ untagged: angle projections



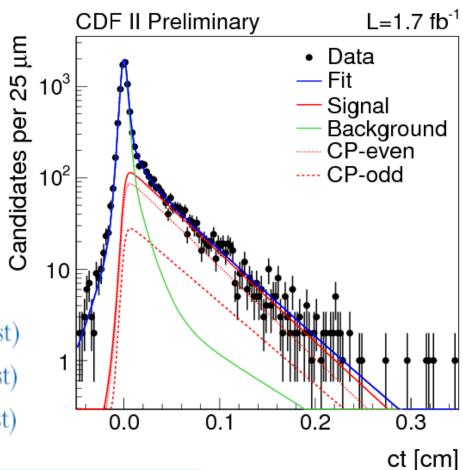
(Sideband-subtracted data agree well with signal PDF)

$\Delta\Gamma_{\rm s}$ ($B_{\rm s}$ decay width)

- CP-even (≈B_s^{light}) and CP-odd (≈B_s^{heavy}) components have different lifetimes → ΔΓ ≠ 0
- In agreement and <u>30-50% better</u> than previous best measurements (DØ, 2007) and 2x better than PDG

$$|A_0(0)|^2 = 0.531 \pm 0.020 \text{ (stat)} \pm 0.007 \text{ (syst)}$$

 $|A_{\parallel}(0)|^2 = 0.230 \pm 0.026 \text{ (stat)} \pm 0.009 \text{ (syst)}$
 $|A_{\perp}(0)|^2 = 0.239 \pm 0.029 \text{ (stat)} \pm 0.011 \text{ (syst)}$

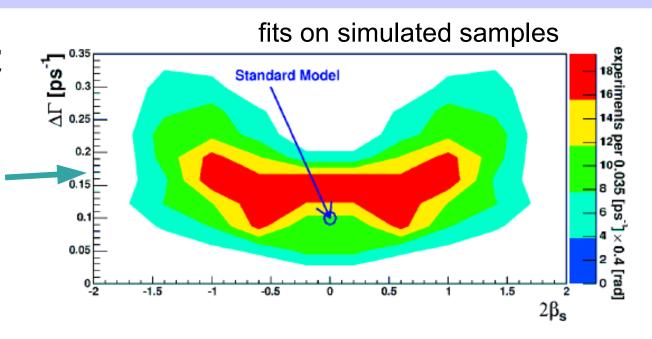


 $\Delta\Gamma = 0.08 + -0.06 \text{ (stat)} + -0.01 \text{ (syst) ps}^{-1}$

$B_s \rightarrow J/\psi \phi$ untagged: floating β_s

Even without tagging, have some sensitivity to β_s

But, there are biases seen in pseudo experiments

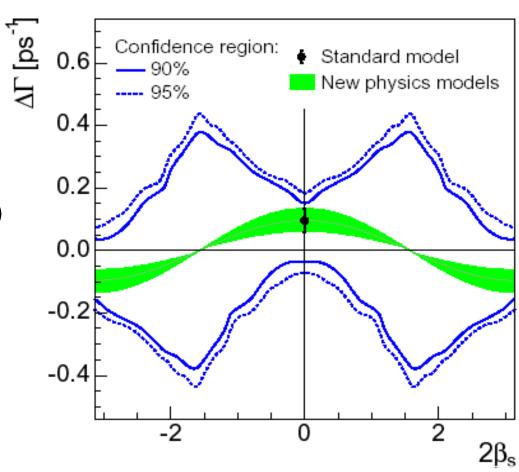


Reasons:

- Loss of degrees of freedom: e.g. when $\Delta\Gamma -> 0$, δ_{\perp} is undetermined, no sensitivity to β_s at all: $\cos(\delta_{\perp})\sin(2\beta_s)\sinh(\Delta\Gamma t/2)$]
- 4-fold ambiguity existed in likelihood function (=> there are 4 equivallent minima!) $2\beta_s \rightarrow -2\beta_s, \ \delta_\perp \rightarrow \delta_\perp + \pi$ $\Delta\Gamma \rightarrow -\Delta\Gamma, \ 2\beta_s \rightarrow 2\beta_s + \pi$

Confidence Region without tagging

Use Likelihood-Ratio ordering (Feldman-Cousins) to determine Confidence Region in β_s – $\Delta\Gamma$ space.



Under assumption of SM, the probability of data fluctuating to our observation or better is 22% or 1.2σ.

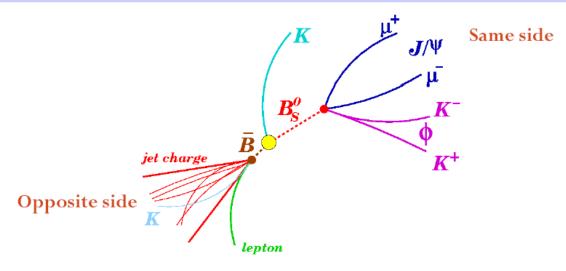
Step #2: add flavor tagging

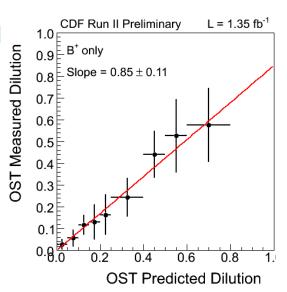
- Flavor tagging produces
 - tag decision
 - this tag's predicted dilution (i.e. = 1-2w)
- Opposite Side Tagging (OST) calibrated on B⁺
- Same Side (Kaon) Tagging calibrated on MC (but checked on mixing measurement)

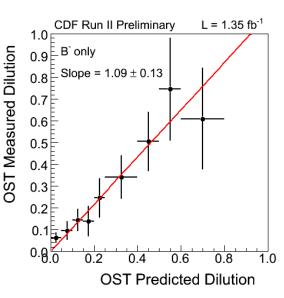
OST efficiency 96 +/- 1% OST dilution: 11 +/- 2%

SST efficiency 50 +/- 1% SST dilution 27 +/- 4%

Total $\varepsilon D^2 \sim 4.5\%$







Study effect of tagging in Toy MC

• PDF predicts better sensitivity to β_s but still with 2 minima due to symmetry:

$$2\beta_{s} \rightarrow \pi - 2\beta_{s}$$

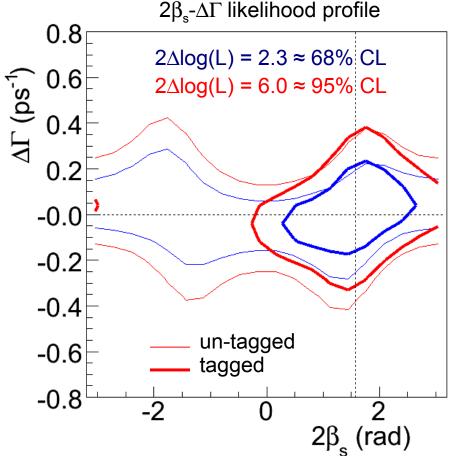
$$\Delta\Gamma \rightarrow -\Delta\Gamma$$

$$\delta_{\parallel} \rightarrow 2\pi - \delta_{\parallel}$$

$$\delta_{\perp} \rightarrow \pi - \delta_{\perp}$$

- Improvement of parameter resolution is small due to limited tagging power (εD² ~ 4.5% vs ~30% at BaBar/Belle)
- However:

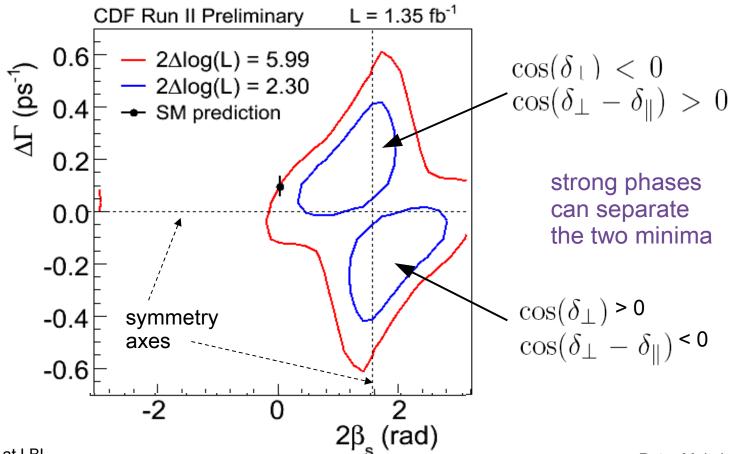
 $\beta_s \rightarrow$ - β_s no longer a symmetry \rightarrow 4-fold ambiguity reduced to 2-fold ambiguity



 \rightarrow allowed region for β_s is reduced to half!

Tagged $B_s \rightarrow J/\psi \phi$ analysis

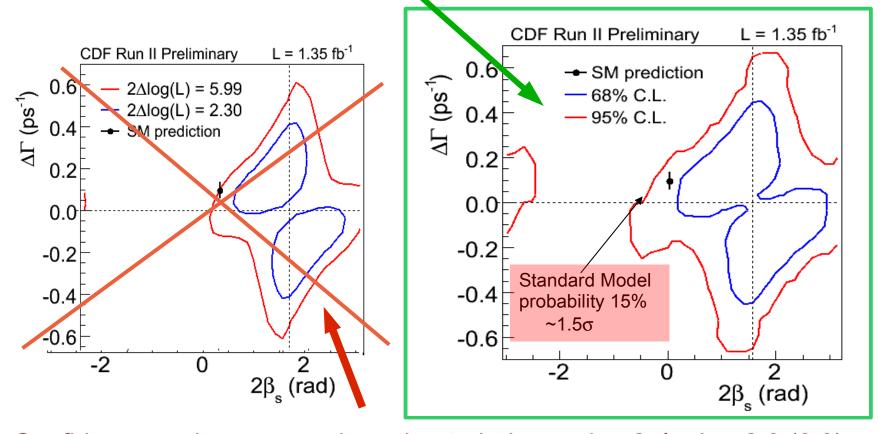
- First tagged analysis of $B_s \rightarrow J/\Psi\Phi$ (1.4 fb⁻¹)
- Signal B_s yield ~2000 events with S/B ~ 1



3/18/2008, RPM at LBL

Tagged $B_s \rightarrow J/\psi \phi$ analysis

- As in untagged: irregular likelihood doesn't allow quoting point estimate
- Quote Feldman-Cousins confidence regions (including systematics!)



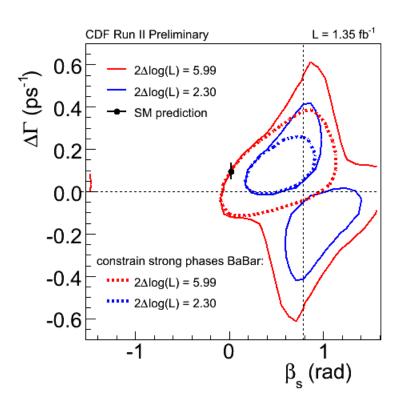
• Confidence regions are <u>underestimated</u> when using 2∆logL = 2.3 (6.0) to approximate 68% (95%) C.L. regions

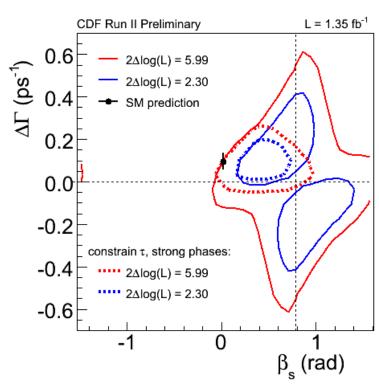
β_s with external constraints

- Spectator model: B_s and B⁰ have similar lifetimes and strong phases
- Likelihood profiles with external constraints from *B* factories:

constrain strong phases to B^0 :

constrain lifetime and strong phases:



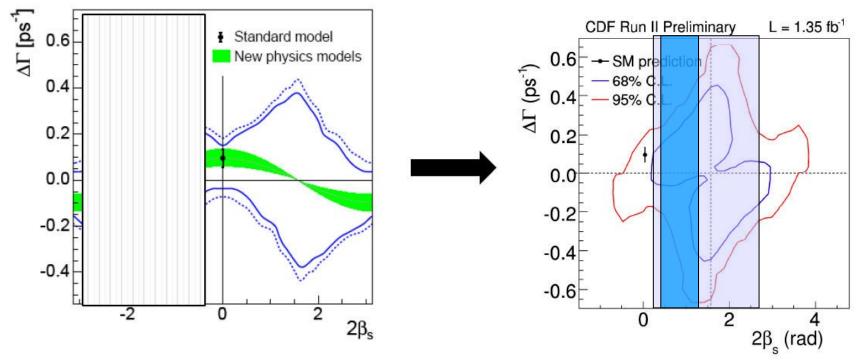


External constraints on strong phases remove residual 2-fold ambiguity

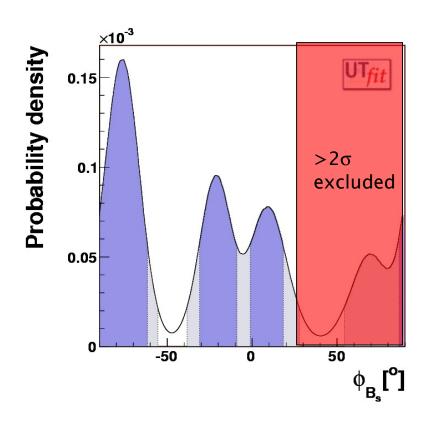
β_s: 1-Dimensional Feldman-Cousins results

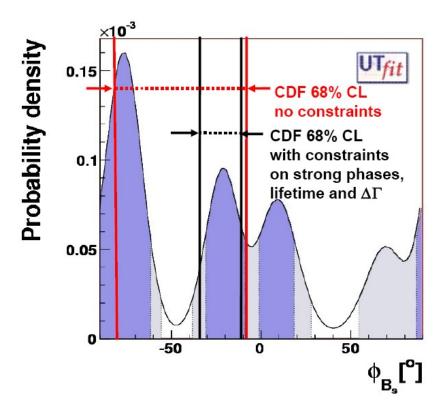
- 1D Feldman-Cousins procedure without external constraints: $2\beta_s$ in [0.32, 2.82] at the 68% C.L. \rightarrow 2 β_s
- 1D Feldman-Cousins with external constraints on strong phases, lifetime and $|\Gamma_{12}|=0.048+/-0.018$ ps⁻¹:

 $2\beta_s$ in [0.40, 1.20] at 68% C.L.



Impact of the tagged β_s analysis





2D result from Feldman-Cousins

1D result from Feldman Cousins

CP asymmetry in semileptonic Bs decays

- Alternative approach to ϕ_s (β_s): an *inclusive* measurement
- Semileptonic CP asymmetry related to $\phi_s^{
 m SM} = {
 m arg}(-M_{12}/\Gamma_{12})$

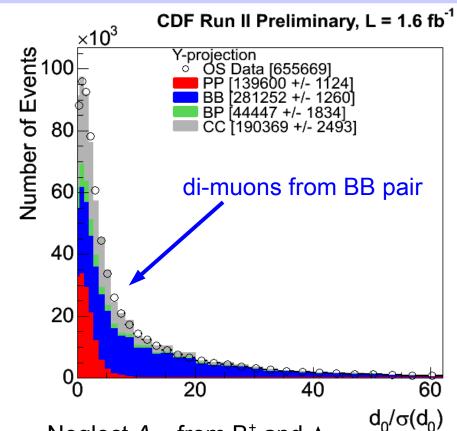
$$A_{SL}^{s,unt} = \frac{1}{2} \frac{\Delta \Gamma_s}{\Delta m_s} \tan \phi_s$$

- It could be combined with $2\beta_s$ - $\Delta\Gamma$ measurement from $B_s \to J/\psi \phi$ but CDF hasn't done so yet.
- We measure it by counting the number of ++ and muon pairs:

$$A_{corr} = \frac{N_{obs}^{++}(\frac{1}{\epsilon_{+}^{2}}) - N_{obs}^{--}(\frac{1}{\epsilon_{-}^{2}})}{N_{obs}^{++}(\frac{1}{\epsilon_{+}^{2}}) + N_{obs}^{--}(\frac{1}{\epsilon_{-}^{2}})} \ = \ \frac{N_{obs}^{++} - N_{obs}^{--}(\frac{\epsilon_{+}}{\epsilon_{-}})^{2}}{N_{obs}^{++} + N_{obs}^{--}(\frac{\epsilon_{+}}{\epsilon_{-}})^{2}}$$

CP asymmetry in semileptonic B_s decays

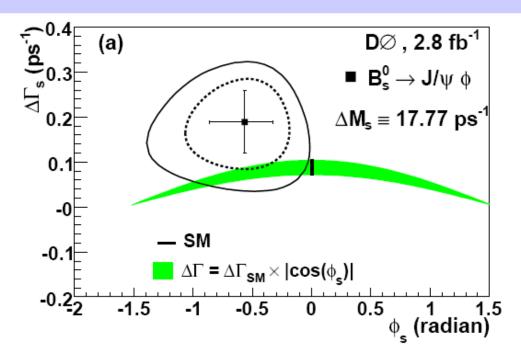
- - 660k opposite sign
 - 440k same sign dimuon pairs
- use d₀ of two muons to separate
 - di-μ from BB pair
 - charm (CC)
 - prompt (PP)
 - B+prompt (BP)
- correct for
 - hadrons faking muons
 - detector and trigger asymmetries



- Neglect $A_{_{\mathrm{CP}}}$ from $\mathrm{B}^{\scriptscriptstyle{+}}$ and $\Lambda_{_{\mathrm{b}}}$
- Correct for A^d_{SL} from B factories:

$$A_{SL}^{s} = 0.020 \pm 0.021(stat) \pm 0.016(syst) \pm 0.009(inputs)$$

D0 result and new UTfit preprint



$$\begin{split} &\varphi_{\rm s} = -0.57^{+0.24}_{-0.30}({\rm stat}) \,\, ^{+0.07}_{-0.02}({\rm syst}) \\ &\Delta\Gamma = \, +0.19 \pm 0.07({\rm stat}) \,\, ^{+0.02}_{-0.01}({\rm syst}) \,\, {\rm ps^{-1}} \end{split}$$

With constraint from HFAG: $\delta 1 = -0.46$, $\delta 2 = 2.92$ Constraint within $\pi/5$

From UTfit 3o???

arXiv.org > hep-ph > arXiv:0803.0659v1

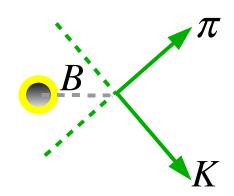
FIRST EVIDENCE OF NEW PHYSICS IN $b \leftrightarrow s$ TRANSITIONS

(UTfit Collaboration)

We combine all the available experimental information on B_s mixing, including the very recent tagged analyses of $B_s \to J/\Psi \phi$ by the CDF and DØ collaborations. We find that the phase of the B_s mixing amplitude deviates more than 3σ from the Standard Model prediction. While no single measurement has a 3σ significance yet, all the constraints show a remarkable agreement with the combined result. This is a first evidence of physics beyond the Standard Model. This result disfavours New Physics models with Minimal Flavour Violation with the same significance.

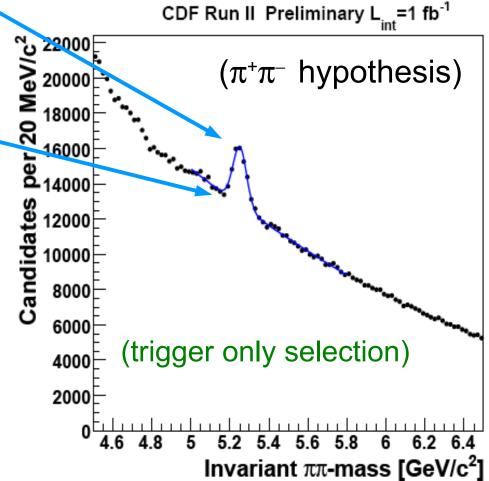
Composition of $B \to h^+ h'^-$

• Bump a mixture of: $B_d \to K\pi$



 $B_d \to \pi\pi$ $B_s \to KK$ $B_s \to K\pi$

- Need to optimize & disentangle
- Using dE/dx
 - Effective K/π separation of $dE/dx \sim 1.4 \sigma$



⇒ Separate contributions on a statistical basis

Tools to decompose $B o h^+ h'^-$

- Multi-dimensional unbinned likelihood fit
- m(π) + a quantity related to dE/dx
- Kinematics for two other dimensions:

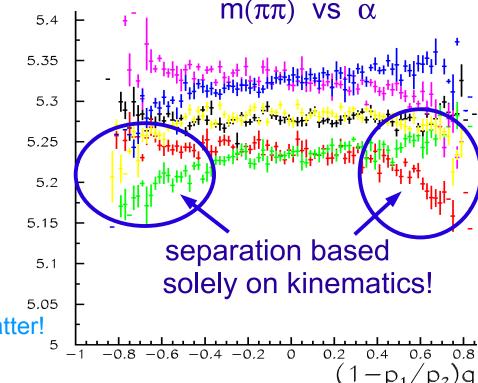
$$\bullet \quad p_{tot} = p_1 + p_2$$

• Momentum imbalance α (assuming $p_1 < p_2$)

$$lpha = \left(1 - rac{oldsymbol{p}_1}{oldsymbol{p}_2}
ight)oldsymbol{\cdot} oldsymbol{q}_1$$

Mixes charge and kinematics

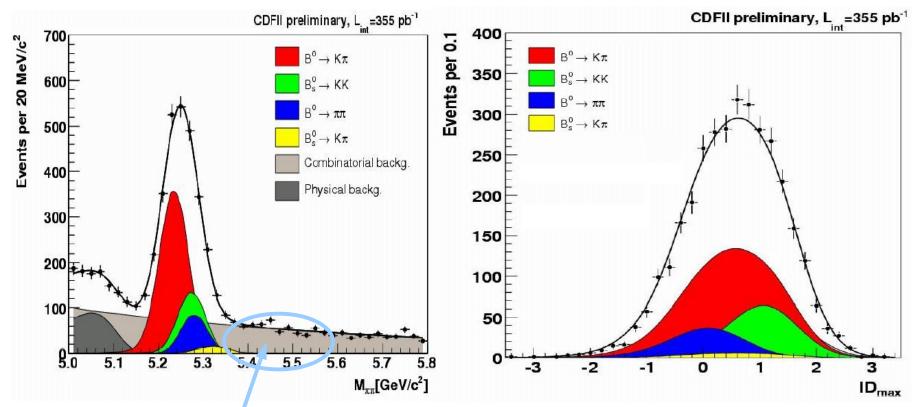
==> Can separate matter from antimatter!



$B \to h^+ h'^-$: old projections (as example)

Can clearly separate these decay modes

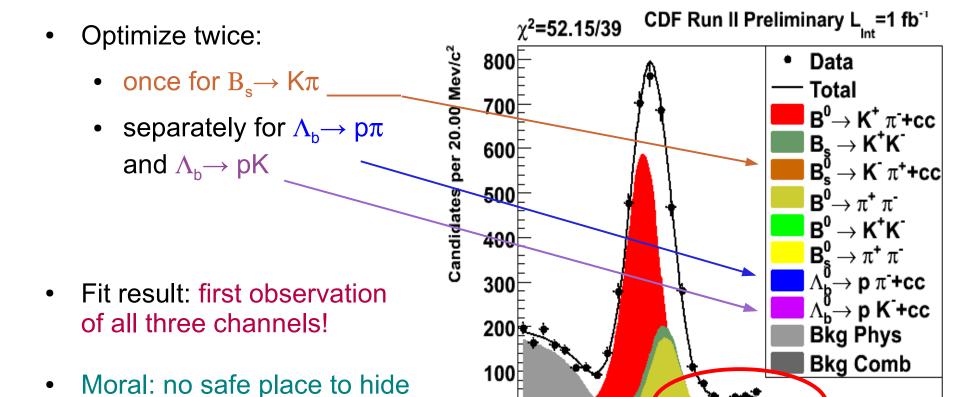
(But, these are **old** plots, story gets more complicated)



 A stubborn bump that doesn't go away when we blind the signal region and optimize using sidebands... ???

$B \to h^+ h'^-$: modern approach

• Solution: also include $\Lambda_b \rightarrow p\pi$ and $\Lambda_b \rightarrow pK$ in the fit!



from the signal! (Just like SUSY @ LHC.)

3/18/2008, RPM at LBL Petar Maksimovic, JHU

5.2

5.6

Invariant ππ-mass [GeV/c²]

BR's and Acp in $B_{s(d)} \rightarrow K^{-}\pi^{+}$ (in 1 fb⁻¹)

- $B_s \rightarrow K^-\pi^+$ mode can be used for measuring γ
- A_{CP} in $B_s \to K^-\pi^+$ could provide a powerful model-independent test of the source of direct CP asymmetry observed in $B^0 \to K^-\pi^+$
- We see a > 2σ effect:

$$A_{\rm CP} = \frac{N(\overline{B}^0_s \to K^+\pi^-) - N(B^0_s \to K^-\pi^+)}{N(\overline{B}^0_s \to K^+\pi^-) + N(B^0_s \to K^-\pi^+)} \ = \ 0.39 \pm 0.15 \ (stat.) \pm 0.08 \ (syst.)$$

• CP asymmetry in $B^0 \rightarrow K^-\pi^+$ (improves world average from 6σ to 7σ ; and this is only 1/3 of the data...)

$$A_{\rm CP} = \frac{N(\overline{B}^0 \to K^-\pi^+) - N(B^0 \to K^+\pi^-)}{N(\overline{B}^0 \to K^-\pi^+) + N(B^0 \to K^+\pi^-)} \ = \ -0.086 \pm 0.023 \ (stat.) \pm 0.009 \ (syst.)$$

BR's and Acp in $\Lambda_b \rightarrow p \pi(K)$ (in 1 fb⁻¹)

Results:

$$\begin{split} A_{\mathsf{CP}}(\Lambda_b^0 \to p\pi^-) &= \frac{\mathcal{B}(\Lambda_b^0 \to p\pi^-) - \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p}\pi^+)}{\mathcal{B}(\Lambda_b^0 \to p\pi^-) + \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p}\pi^+)} \\ &= 0.03 \pm 0.17 \; (stat.) \pm 0.05 \; (syst.) \\ A_{\mathsf{CP}}(\Lambda_b^0 \to pK^-) &= \frac{\mathcal{B}(\Lambda_b^0 \to pK^-) - \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p}K^+)}{\mathcal{B}(\Lambda_b^0 \to pK^-) + \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p}K^+)} \\ &= 0.37 \pm 0.17 \; (stat.) \pm 0.03 \; (syst.) \end{split}$$

- First CP asymmetry meas. in b-baryon decays (expect SM ~ 10%)
- Additionally, first measurement of branching fraction relative to B⁰ → Kπ decays:

$$\frac{\sigma(p\bar{p}\to\Lambda_b^0X, p_T > 6 \text{ GeV/}c)}{\sigma(p\bar{p}\to B^0X, p_T > 6 \text{ GeV/}c)} \frac{\mathcal{B}(\Lambda_b^0\to p\pi^-)}{\mathcal{B}(B^0\to K^+\pi^-)} = 0.0415 \pm 0.0074 \text{ (stat.)} \pm 0.0058 \text{ (syst.)}$$
$$\frac{\sigma(p\bar{p}\to\Lambda_b^0X, p_T > 6 \text{ GeV/}c)}{\sigma(p\bar{p}\to B^0X, p_T > 6 \text{ GeV/}c)} \frac{\mathcal{B}(\Lambda_b^0\to pK^-)}{\mathcal{B}(B^0\to K^+\pi^-)} = 0.0663 \pm 0.0089 \text{ (stat.)} \pm 0.0084 \text{ (syst.)}$$

BR's and Acp in $B^+ \rightarrow D^0 K^+$

• Measures quantities relevant for determination of the CKM angle γ $arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$ by measuring A_{CP}^+ , A_{CP}^- , R_{CP}^+ and R_{CP}^-

$$A_{CP+} = \frac{BR(B^- \to D^0_{CP+}K^-) - BR(B^+ \to D^0_{CP+}K^+)}{BR(B^- \to D^0_{CP+}K^-) + BR(B^+ \to D^0_{CP+}K^+)}$$

$$B_{CP+} = \frac{R_+}{BR} \text{ where:}$$

$$R_{CP+} = \frac{R_+}{R}$$
 where:

$$R = \frac{BR(B^{-} \to D^{0}K^{-}) + BR(B^{+} \to \overline{D}^{0}K^{+})}{BR(B^{-} \to D^{0}\pi^{-}) + BR(B^{+} \to \overline{D}^{0}\pi^{+})}$$

Flavor eigenstate:

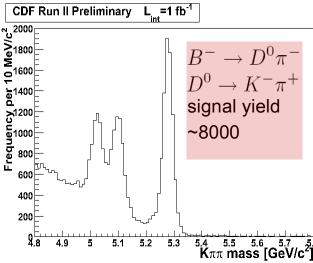
$$D^0 \rightarrow K^-\pi^+$$

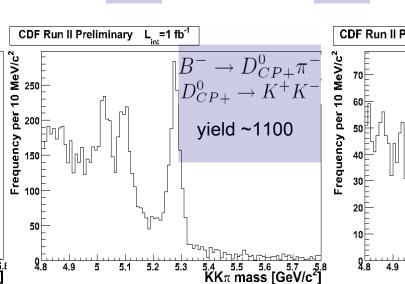
$$R_{+} = \frac{BR(B^{-} \to D_{CP+}^{0}K^{-}) + BR(B^{+} \to D_{CP+}^{0}K^{+})}{BR(B^{-} \to D_{CP+}^{0}\pi^{-}) + BR(B^{+} \to D_{CP+}^{0}\pi^{+})}$$

CP even eigenstate:

$$D^0_{CP+} o K^+K^-$$

 $D^0_{CP+} o \pi^+\pi^-$

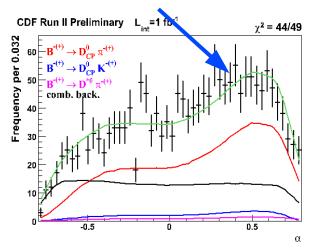




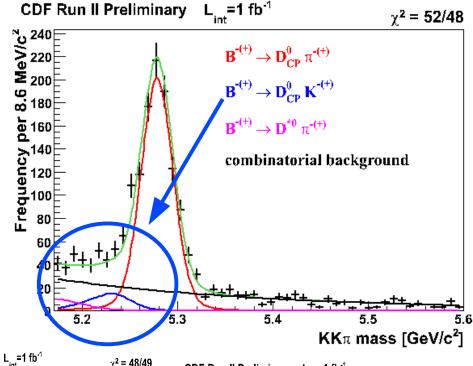


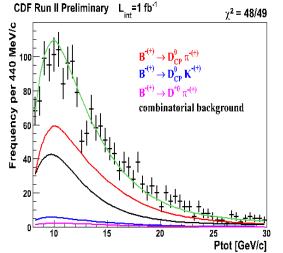
BR's and Acp in $B^+ \rightarrow D^0 K^+$

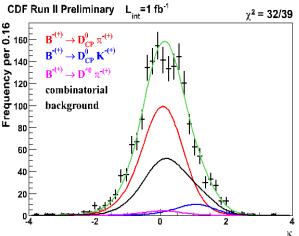
- Apply the same trick to $B^+ \to D^0 \pi^+$ and $B^+ \to D^0 K^+$ decays
- α distribution stops being symmetric (D is much heavier)



But, the same approach works here as well!







BR's and Acp in $B^+ \rightarrow D^0 K^+$

- Results:
 - ratio of branching fractions:

$$R = \frac{BR(B^- \to D^0 K^-) + BR(B^+ \to \overline{D}^0 K^+)}{BR(B^- \to D^0 \pi^-) + BR(B^+ \to \overline{D}^0 \pi^+)} = 0.0745 \pm 0.0043(stat.) \pm 0.0045(syst.)$$

$$R_{CP+} = \frac{BR(B^- \to D^0_{CP+} K^-) + BR(B^+ \to D^0_{CP+} K^+)}{[BR(B^- \to D^0 K^-) + BR(B^+ \to \overline{D}^0 K^+)]/2} = 1.57 \pm 0.24(stat.) \pm 0.12(syst.)$$

- direct CP asymmetry:

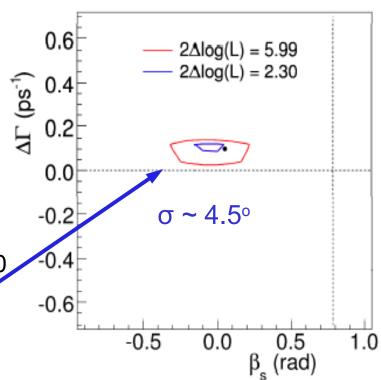
$$A_{CP+} = \frac{BR(B^- \to D_{CP+}^0 K^-) - BR(B^+ \to D_{CP+}^0 K^+)}{BR(B^- \to D_{CP+}^0 K^-) + BR(B^+ \to D_{CP+}^0 K^+)} = 0.37 \pm 0.14(stat.) \pm 0.04(syst.)$$

- Quantities measured for the first time at hadron colliders
- Results in agreement and competitive with B factories

3/18/2008, RPM at LBL

Conclusions

- Very rich B physics program at Tevatron and CDF
 - Competitive with but also complementary to BaBar and Belle
 - Excluded a large domain of $\beta_s < 0$
- Great Tevatron performance
 - keep accumulating data
 - keep updating analyses
 - work hard to update of $B_s \rightarrow J/\psi \phi$ for the summer
 - properly combine likelihoods with D0
 - expect 6 fb-1 by the end of Run2



 This is an exciting time to work on CP violation and search for new phenomena in B decays!

Backup Slides

Rare decays

- With 2.0 fb⁻¹, best limit in:

$${\cal B}(B^0_s o \mu^+\mu^-) < 5.8 imes 10^{-8} \; (4.7 imes 10^{-8})$$
 at 95(90)%CL ${\cal B}(B^0 o \mu^+\mu^-) < 1.8 imes 10^{-8} \; (1.5 imes 10^{-8})$ at 95(90)%CL

arXiv:0712.1708

- 0.9 fb-1

$$B(B^+ \to \mu^+ \mu^- K^+) = (0.60 \pm 0.15 \pm 0.04) \times 10^{-6}, \\ B(B^0 \to \mu^+ \mu^- K^{*0}) = (0.82 \pm 0.31 \pm 0.10) \times 10^{-6} \\ \end{array} \right\} \quad \text{consistent with world average and} \quad \text{competitive with best measurements}$$

$$B(B_s \to \mu^+ \mu^- \phi) / B(B_s \to J/\psi \phi) < 2.61(2.30) \times 10^{-3} \text{ at } 95(90)\%CL$$
 best limit

http://www-cdf.fnal.gov/physics/new/bottom/061130.blessed_bmumuh/

- First observation of $\,\overline{B}{}^0_s \to D_s^\pm K^\mp\,$ in 1.2 fb⁻¹

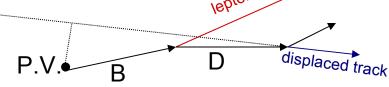
109 +/- 9 signal events with ~8 sigma significance Measure branching fraction relative to Cabibbo allowed mode:

$$\mathcal{B}(\overline{B}_s^0 \to D_s^{\pm} K^{\mp})/\mathcal{B}(\overline{B}_s^0 \to D_s^{+} \pi^{-}) = 0.107 \pm 0.019 (\text{stat}) \pm 0.008 (\text{sys})$$

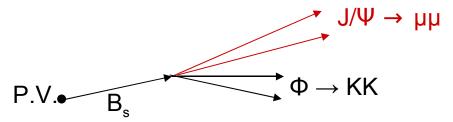
http://www-cdf.fnal.gov/physics/new/bottom/070524.blessed-Bs-DsK/

Triggers

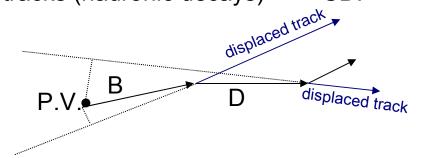
- Triggers designed to select events with topologies consistent with B decays:
 - single lepton (+ displaced track) (semileptonic decays) ← DØ (CDF)



- di-lepton (B \rightarrow J/Ψ, B \rightarrow μμ, B \rightarrow μμ + hadrom) \leftarrow both CDF and DØ



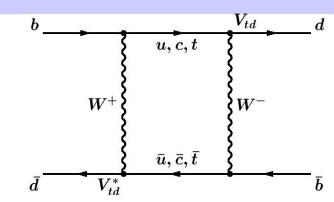
- displaced tracks (hadronic decays) ← CDF



Flavor tagging refresher

Flavor asymmetry (from B mixing)

$$A(t) \equiv rac{N_{
m unmix} - N_{
m mix}}{N_{
m unmix} + N_{
m mix}} = D cos \Delta m_s t$$



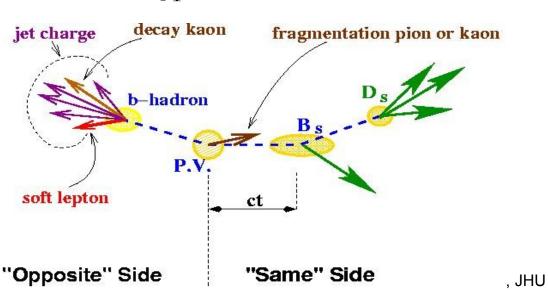
To measure mixing:

Flavor at production (via "flavor tagging")

Favor at decay

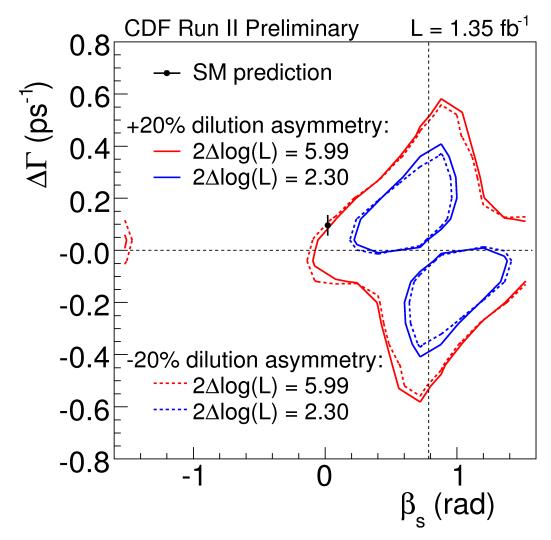
$$ct \equiv L_{ ext{xy}} rac{m}{p_T}$$

- Flavor tagging characterized by:
 - efficiency ε and dilution D (= 1-2w)
 - Statistical power ~ εD²



Effect of Dilution asymmetry on β_s

Effect of 20% b-bbar dilution asymmetry is very small

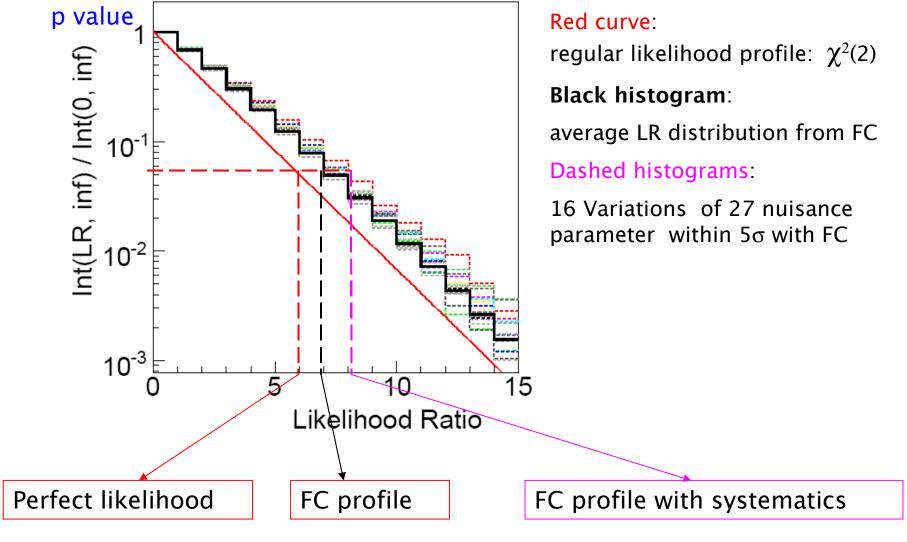


$B_s \rightarrow J/\psi \phi$ phenomenology

- $B_s \rightarrow J/\Psi\Phi$ decay rate as function of time, decay angles and initial B_s flavor:

$$\begin{array}{ll} \frac{d^4P(t,\vec{\rho})}{dtd\vec{\rho}} & \propto & |A_0|^2T_+f_1(\vec{\rho}) + |A_\parallel|^2T_+f_2(\vec{\rho}) & \text{time dependence terms} \\ & + & |A_\perp|^2T_-f_3(\vec{\rho}) + |A_\parallel||A_\perp|\mathcal{U}_+f_4(\vec{\rho}) & \text{angular dependence terms} \\ & + & |A_0||A_\parallel|\cos(\delta_\parallel)T_+f_5(\vec{\rho}) & \text{terms with } \beta_s \text{ dependence} \\ & + & |A_0||A_\parallel|\cos(\delta_\parallel)T_+f_5(\vec{\rho}) & \text{terms with } \beta_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \beta_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \beta_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \beta_s \text{ dependence} \\ & + & |A_0||A_\parallel|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \beta_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \beta_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \beta_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \beta_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{terms with } \Delta_m_s \text{ dependence} \\ & + & |A_0||A_\perp|\mathcal{V}_+f_6(\vec{\rho}), & \text{te$$

Systematics



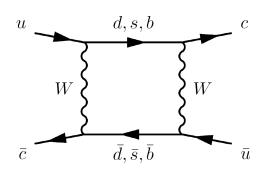
3/18/2008, RPM at LBL

D⁰ Mixing

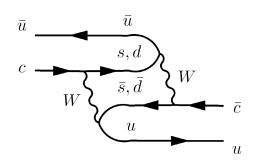
arXiv:0712.1567

- After recent observation of fastest neutral meson oscillations in B_s system by CDF and DØ \rightarrow time to look at the slowest oscillation of D 0 mesons \odot
- D^o mixing in SM occurs through either:

'short range' processes (negligible in SM)



'long range' processes



	$\Delta M/\Gamma$	ΔΓ/Γ
K^0	0.474	0.997
B^0	0.77	<0.01
B_{s}	27	0.15
D_0	< few%	< few%

- Recent D⁰ mixing evidence ← different D⁰ decay time distributions in

 $\begin{array}{c} \textit{Belle} \\ \mathsf{D^0} \to \pi\pi, \ \mathsf{KK} \ (\mathsf{CP} \ \mathsf{eigenstates}) \\ \mathsf{compared} \ \mathsf{to} \ \mathsf{D^0} \to \mathsf{K}\pi \end{array}$

BaBar

doubly Cabibbo suppressed (DCS) D⁰ →K⁺π⁻

compared to Cabibbo favored (CF) D⁰ →K⁻π⁺

(Belle does not see evidence in this mode)

Evidence for D^o Mixing

- CDF sees evidence for D⁰ mixing at 3.8 σ significance by comparing DCS D⁰ \rightarrow K⁺ π ⁻ decay time distribution to CF D⁰ \rightarrow K⁻ π ⁺ (confirms *BaBar*)

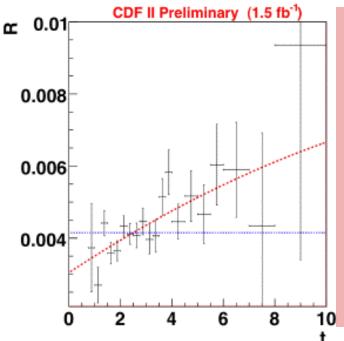
- Ratio of decay time distributions:

$$R(t/ au)=R_D+\sqrt{R_D}y'(t/ au)+rac{x'^2+y'^2}{4}(t/ au)^2$$

where $x' = x \cos \delta + y \sin \delta$ and $y' = -x \sin \delta + y \cos \delta$

 $\boldsymbol{\delta}$ is strong phase between DCS and CF amplitudes

mixing parameters $x = \Delta M/\Gamma$ $y = \Delta \Gamma/2\Gamma$ are 0 in absence of mixing



Fit type	- \	· /	$x^{\prime 2} (10^{-3})$, c ,
Unconstrained	3.04 ± 0.55	8.5 ± 7.6	-0.12 ± 0.35	19.2 / 17
Physically				·
allowed	3.22 ± 0.23	6.0 ± 1.4	0	19.3 / 18
No mixing	4.15 ± 0.10	0	0	36.8 / 19

				Mixing
Experiment	$R_D(10^{-3})$	$y'(10^{-3})$	$x^{\prime 2} (10^{-3})$	Signif.
CDF	3.04 ± 0.55	8.5 ± 7.6	-0.12 ± 0.35	3.8
BABAR	3.03 ± 0.19	9.7 ± 5.4	-0.22 ± 0.37	3.9
Belle	3.64 ± 0.17	$0.6^{+4.0}_{-3.9}$	$0.18^{\ +0.21}_{\ -0.23}$	2.0